

Title	Syllabus Distribution (CBCS)
Session	2020-21 (Odd Semester)
Department	B.Sc General in Mathematics
Institution Name	Hiralal Bhakat College, Nalhati, Birbhum, W.B.
Coordinator	Dr. Banshidhar Sahoo, Assistant Professor in Mathematics

Details of Courses of B.Sc. General under CBCS

SI.	Course	Credit		Marks
1.	Core Course (12 Papers)	Theory+Practical	Theory+Tuitorial	12×75=900
	4 core papers each in 3 disciplines of choice	12×(4+2)=72	12×(5+1)=72	
2.	Elective Course DSE	6×(4+2)=36	6×(5+1)=36	6×75=450
	(6 Papers)			
3	Ability Enhancement Core			
	Course (AECC)	4×1=4	4×1=4	100
	AECC-1 (ENVS)	2×1=2	2×1=2	50
	AECC-2 (English/MIL)			
4.	SEC (4 Papers)	4×2=8	4×2=8	4×50=200
	Total Credit:	122	122	1700

B.Sc. Mathematics General Course Structure

Semester	Course Course (CC)	Discipline Specific Elective (DSE)	Ability Enhancement Course	
			AECC (2)	SEC (4)
I	CC1A (Mathematics) CC2A (Physics) CC3A (Computer Sc.)		AECC-1	
II	CC1B (Mathematics) CC2B (Physics) CC3B (Computer Sc.)		AECC-2	
III	CC1C (Mathematics) CC2C (Physics) CC3C (Computer Sc.)			SEC-1 (Mathematics) or SEC-1 (Computer Sc.)
IV	CC1D (Mathematics) CC2D (Physics) CC3D (Computer Sc.)			SEC-2 (Mathematics) or SEC-2 (Computer Sc.)
V		DSE1A (Mathematics) DSE2A (Physics) DSE3A (Computer Sc.)		SEC-3 (Mathematics) or SEC-3 (Physics)
VI		DSE1B (Mathematics) DSE2B (Physics) DSE3B (Computer Sc.)		SEC-4 (Mathematics) or SEC-4 (Physics)

<mark>Semester-I</mark>

Core Course (CC 1A): Differential Calculus (Marks: 75)

Syllabus	Number of Lecture	Name of Teacher
Limit and Continuity, Types of discontinuities, Differentiability of function, Successive derivative, Leibnitz's Theorem, Partial differential, Euler's Theorem.	20 L	
Tangent and Normal, Curvature, Asymptotes, Singular Points, Tracing of Curves. Polar Coordinates and tracing of curves in polar coordinates.	15 L	Dr. Banshidhar Sahoo
Rolles's Theorem, MVT, Taylor's theorem with Lagrange's and Cauchy's form of remainder. Taylor's series, Maclaurin's series of sin(x), cos(x), e ^x , log(1+x). Maxima and minima. Indeterminate form.	25 L	

- 1. G.B. Thomas and R.I. Finney: Calculus, Pearson Education, 2007
- 2. U.L.Rohde, G.C.Jain, A.K. Poddar and A.K.Ghosh: Introduction to differential Calculus, John Wiley & Sons Inc.
- 3. R.K.Ghosh and K.C.Maity: An Introduction to Analysis: Differential Calculus (Part I), New Central Book Agency.
- 4. S.K.Mapa: Introduction to Real Analysis, Sarat Book Distributor, 2019.

Semester-III

Core Course (CC 1C): Real Analysis (Marks 75)

Syllabus	Number of Lecture	Name of Teacher
Finite and infinite sets, countable and uncountable sets. Real	15 L	
line, bounded sets, supremum and infimia, completeness,		
property of R. Archimedean property of R, intervals. Concept		
of cluster points and statement of Bolzano-weierstrass theorem.		
Real sequence, Bounded sequence, Cauchy convergent critarion	15 L	
for sequences. Cauchy's theorem on limits, monotone		Dr. Banshidhar
sequences and their convergence.		Sahoo
Infinite series, Cauchy convergence criterion for series, positive	15 L	
term series, geometric series, comparison test, convergence of		
p-series. Root test, alternating series. Leibnitz's test. Definition		
and example of absolute and conditionally convergent series.		
Sequence and series of functions, Pointwise and uniform	15 L	
convergence, M _n -test, M-test. Statement of theresult about		
uniform convergence and integrability and differentiability of		
function. Power series and radius of convergence.		

- 1. T.M. Apostol: Calculus (Vol. 1), John Wiley and Sons (Asia) P. Ltd., 2002.
- 2. R.G. Bartle and D.R. Sherbert: Introduction to real Analysis. John Wiley and Sons (Asia) P. Ltd., 2000.
- 3. R.K.Ghosh and K.C.Maity: An Introduction to Analysis: Differential Calculus (Part I), New Central Book Agency.
- 4. S.K.Mapa: Introduction to Real Analysis, Sarat Book Distributor, 2019.

Skill Enhancement Course (SEC 1): Integral Calculus (Marks 50)

Syllabus	Number of Lecture	Name of Teacher
Integration by Partial fractions, integration of rational and irrational functions. Properties of definite integrals. Reduction formulae for integrals of rational, trigonometric, exponential and logaritmmic function and their properties.	25 L	Dr. Banshidhar Sahoo
Areas and length of curves in the plane, volumes and surfaces of solids of revolution. Doublend triple integrals.	15 L	

- 1. S. Narayan and P.K. Mittal: Integral Calculus, S. Chand.
- 2. J Edwards: Integral Calculus for Beginners, Arihant Publishers.
- 3. R.K. Ghosh and K.C. Maity: Integral Calculus, New Central Book Agency

Semester-V

Core Course (DSE 1A): Linear Algebra (Marks: 75)

Syllabus	Number of Lecture	Name of Teacher
Vector Spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.	20 L	
Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation. Matrix representation of linear transformation, algebra of linear transformations. Dual space, Dual Basis, Double Dual. Eigen values and eigen vectors. Characteristic polynomial. Isomorphisms, Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.	40 L	Dr. Banshidhar Sahoo

- 1. Stephen H. Friedberg, Arnold J. Insel and Lawrence E. Spence: Linear Algebra, 4th Ed., Prentice-Hall of India Pvt. Ltd., New Delhi, 2004.
- 2. Gilbert Strang: Linear Algebra and its applications, Thomson, 2007.
- 3. S.K. Mapa: Higher Algebra, Levant Books.
- 4. Tom M. Apostol: Linear Algebra, John Wiley & Sons Inc.

Skill Enhancement Course (SEC 3): Probability and Statistics (Marks 50)

Syllabus	Number of Lecture	Name of Teacher
Sample space, probability axioms, real random variables, cumulative distribution function, probability mass functions. Mathematical expectation, moments, moments generating function, characteristic function. Discrete distributions: uniform, binomial, Poisson. Continious distribution: uniform, normal, exponential.	20 L	Dr. Banshidhar Sahoo
Joint comulative distribution function and its properties, joint probability density functions, marginal and contional distributions. Expectation of function of two random variables, conditional expectations, independent random variables.	20 L	

Reference Books:

- 1. Sheldon Ross: Introduction to Probability Model, 9th Ed. Academic Press, Indian Reprint, 2007.
- 2. Amritava Gupta: Groundwork of Mathematical Probability and Statistics, 6th Ed., Academic Press.
- 3. S.C. Gupta and V.K. Kapoor: Fundamentals of Applied Statistics, Sultan Chand & Sons Pvt. Ltd.

Head Department of Mathematics Hiralal Bhakat College Nalhati,Birbhum

Janton S.

Teacher- in- Charge Hiralal Bhakat College Nalhati, Birbhum

